O transistor MOSFET de chaveamento Q1 era o Samwin SW7N60. Se for absolutamente impossível colocar um MOSFET igual ao original, é necessário atentar para algumas características importantes ao escolher um substituto, como foi nosso caso. O transistor poderá ter, eventualmente, alguns parâmetros melhores, mas nunca diferentes demais, pois poderia precisar de ajustes em outros componentes da fonte.
Apesar destes cuidados, há também imprecisões dos fabricantes. Encontramos datasheets diferentes para o mesmo transistor SW7N60. Em Semipower [8], a folha de dados está na revisão 3.0, ao passo que o datasheet proveniente de Dianyuan [9], está na revisão 0.2. Comparando-se os dois documentos, são encontradas várias características desiguais, o que faz pensar que os transistores não seriam os mesmos. Será utilizada a versão mais recente como referência, quando não houver comentário especificando isto.
Então, o SW7N60 maneja até 7A sob 600V e tem uma Rds máxima de 1,3 ohm (ou 1 ohm, conforme o datasheet da revisão 0.2 – [9]). Rds ou Rds(on) é a resistência entre dreno e supridouro que o transistor apresenta quando está conduzindo. Na prática, quanto menor esta resistência, menos o transistor aquecerá, pois haverá menos queda de tensão entre o dreno e o supridouro. Tensões de trabalho mais altas geralmente implicam em Rds maior.
Para escolher o novo componente, foi definido que a tensão de trabalho (Drain to Source Voltage – Vdss) deveria ser a mesma, a corrente de dreno (Id) deveria ser igual ou maior, e Rds deveria ser igual ou menor. Obviamente, também deveria ter o mesmo encapsulamento isolado (TO-220F).
O transistor encontrado na sucata, que preencheu os requisitos, foi o 2SK3569. Ele tem Vdss de 600V, maior capacidade de corrente (Id =10A) e menor Rds (0,54 ohm), conforme a Toshiba [10]. Mas há mais alguns detalhes a observar, para podermos aceitá-lo como equivalente.
Por exemplo, a tensão de porta mínima (Gate Threshold Voltage – Vgs(th) ou Vth) para fazê-lo conduzir. O substituto deve ter este limiar de disparo semelhante ao transistor anterior, ou muito próximo disso. O original disparava entre 2 e 4V, o mesmo que o 2SK3569. Mas, no datasheet da versão 0.2 do SW7N60 [9], consta um Vth entre 2 e 5V.
A diferença não é muito grande, pois os dois conseguem ser ativados por níveis lógicos. Pode haver alguma alteração no início da condução, mas os valores, em princípio, estão dentro da tolerância dos transistores e são pequenos o suficiente para o circuito compensar. Mas se colocássemos no lugar um MOSFET que necessitasse tensões mais altas para chavear, o circuito poderia não funcionar.
Outra questão é a capacitância de entrada (Ciss), que no SW7N60 era de 960pF (mínimo) e no substituto é 1500pF. Diferenças neste valor resultam no atraso ou adiantamento do acionamento do MOSFET e podem comprometer a eficiência do circuito. Na versão antiga da ficha técnica do SW7N60, consta 1500pF.
Os tempos de chaveamento indicam até qual frequência o componente pode ser utilizado. São definidos com 4 parâmetros. Os valores à direita de cada item referem-se ao MOSFET original e substituto, respectivamente.
- O tempo de retardo até o início da condução (Turn-on Delay Time – Td(on) ou Ton): 15 a 50ns, contra 50ns;
- O tempo de subida (Rise Time – tr): 30 a 80ns, contra 22ns;
- Tempo de retardo no desligamento (Turn-off Delay Time – Td(off) ou Toff): 100 a 150ns, contra 36ns;
- Tempo de decaimento (Fall Time – tf): 38 a 100ns contra 180ns.
Nota-se que o 2SK3569 é mais veloz, perdendo apenas no tempo de decaimento. Quando montado na fonte, o transistor pareceu aquecer-se, mas ainda não foram feitos testes conclusivos, nem é possível a comparação com o anterior. Em princípio, tudo funcionou adequadamente.
Como curiosidade, na excelente página da Elektroda [11], há um esquema de uma fonte Dell, utilizando o 2SK3569. O sítio é em polonês, mas tem opção em inglês. Deve-se estar logado para acessar os arquivos.
O resistor de supridouro (ou resistor sensor) R3 era, originalmente, de 0,33 ohm. Como não havia outro resistor idêntico, de filme metálico, foi colocado um de 0,39 ohm. Este resistor vai ligado ao pino 3 do UC3483 e tem a função de informar a corrente que passa pelo MOSFET. A tensão sobre o resistor é monitorada constantemente e deve ficar dentro de um limite mínimo e outro máximo. Quando ultrapassados estes limites, o circuito de chaveamento modifica a forma de onda de chaveamento do MOSFET, compensando a falta ou o excesso de energia.
A consequência de utilizar um resistor de valor mais alto como sensor de corrente é a redução da potência disponível pela fonte (em torno de 18%). Mas isto também poderá proteger o equipamento e evitar nova queima. Se houvesse necessidade de toda a potência, poderia ser colocado outro resistor de 2,2 ohm em paralelo com R3, o que manteria o valor original do resistor (0,33 ohm). Mas por segurança, considero melhor utilizar um só componente como resistor sensor, que irá queimar rapidamente, caso ocorra uma sobrecarga.
O circuito integrado com a lógica de chaveamento U1 é o bem conhecido KA3843, ou UC3843. A denominação original é Switch Mode Power Supply (SMPS) controller. O modelo utilizado nesta fonte tem 8 pinos, em formato DIL (Dual In Line) e vários fabricantes o produzem. Ele trabalha com frequência fixa e sua folha de dados está nas referências [12], [13] e [14].
Há também extensa documentação para o dispositivo, proveniente da Texas [15]. Nestas notas de aplicação, há um projeto de fonte de 25W, muito semelhante a este com que trabalhamos.
E no Blog PWM [16], há várias aplicações para o UC4843, como carregador de baterias, elevador de tensão e fonte a 80KHz.
O diodo zener ZD1, de 18V, foi substituído por outro de mesma tensão e potência (18V – 0,25W).
O optoacoplador (ou isolador óptico) U2, por sua vez, é figurinha fácil: é o PC817 [17]. É encontrado em praticamente todas as fontes chaveadas: carregadores de celulares, aparelhos de DVD e CD, além das fontes de notebooks e PCs.
Pela quantidade de peças queimadas, obviamente que o tempo gasto não compensaria o conserto, ainda mais considerando o custo das peças. Mas os componentes aqui utilizados vieram todos da sucata, exceto o fusível. Para uso particular, ou para compreender o funcionamento, pode valer o esforço.
Os componentes “opcionais” da fonte
Na figura 10, tem-se uma visão geral da placa da fonte, já consertada. Nota-se que faltam vários componentes, tanto no estágio primário, quando no secundário. Estas peças melhoram a qualidade da fonte, mas, se não existirem, não a impedem de funcionar. São componentes dedicados à filtragem contra interferências eletromagnéticas (IEM), além de incrementar a proteção ao usuário e ao próprio equipamento.
A placa tem espaço reservado para estas peças, que só são montadas pelos fabricantes quando obrigados por normas de desempenho. Como na Europa, que tem requisitos relativamente severos de compatibilidade eletromagnética (EMC – ElectroMagnetic Compatibility) para os equipamentos eletrônicos vendidos por lá.
Nos países emergentes, que não conseguem efetivamente controlar o comércio irregular, ou onde não há uma clara definição da obrigatoriedade, ocorrem estas “economias”, em que todos saimos perdendo – menos a indústria.
Além de não empregarem estes filtros IEM na quantidade necessária, os fabricantes projetam os circuitos para extrair o máximo de cada componente, de forma a otimizar os custos. São produtos baratos, mas frágeis, pois não costumam aguentar uma sobrecarga qualquer, já que as tolerâncias a falhas são muito pequenas. E são equipamentos geradores de ruídos eletromagnéticos.
Aliás, se tivéssemos que escolher entre duas fontes aparentemente idênticas, muito provavelmente a melhor seria a que tivesse mais componentes, e portanto seria mais pesada. É que os filtros e proteções sempre adicionam alguma massa ao equipamento, pois são relativamente grandes e utilizam bastante cobre e ferrite.
Nenhum comentário:
Postar um comentário